TOPOLOGY-III M.MATH-II FINAL EXAM

Total 50 Marks

- (1) Show that the cohomology ring $H^*(\mathbb{RP}^n; \mathbb{Z}_2) \cong \mathbb{Z}_2[t]/(t^{n+1}).$ (7 marks)
- (2) Show that there is no continuous map $f : \mathbb{RP}^{n+1} \to \mathbb{RP}^n$ such that the induced map $f_* : H_1(\mathbb{RP}^{n+1}; \mathbb{Z}_2) \to H_1(\mathbb{RP}^n; \mathbb{Z}_2)$ is an isomorphism. (Hint: Use the the cohomology ring structure of \mathbb{RP}^n described in problem (1).)

(7 marks)

- (3) Prove that a manifold M is orientable if there is no index 2 subgroup of $\pi_1(M)$. Give an example where the converse is not true. (5 marks)
- (4) Compute the homotopy groups $\pi_n(S^1)$ for n > 1. (5 marks)
- (5) Let M be a orientable closed manifold of dimension n. Show that the group H_{n-1}(M, ℤ) is torsion free.
 (Hint: Homology groups of compact manifolds are finitely generated.)
 (7 marks)
- (6) Prove that if X is a CW-complex with $\pi_n(X) = 0$ for all n then X is contractible. (5 marks)
- (7) Show that if a closed orientable manifold M of dimension 2k has $H_{k-1}(M;\mathbb{Z})$ torsion free, then $H_k(M;\mathbb{Z})$ is also torsion free. (7 marks)
- (8) Compute the cohomology ring $H^*(S^n \times S^m; \mathbb{Z})$. (7 marks)

Hint for problem (1) and (8): The cup product paring $H^k(M; R) \times H^{n-k}(M; R) \to H^n(M; R)$ is non singular for closed *R*-orientable manifolds when *R* is a field, or when $R = \mathbb{Z}$ and torsion in $H^*(M, \mathbb{Z})$ is factored out.